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Voronoi cell-size distribution and Edwards’ compactivity of the parking lot model
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We find by Monte Carlo simulations that the distribution of Voronoi cell sizes for the parking lot model
follows a gamma distribution with shape parameter k=2 for high enough packing fractions ¢. A gamma
distribution of Voronoi cells sizes was found recently by Aste et al. [Europhys. Lett. 79, 24003 (2007)] in
experiments of static packings of monodisperse spheres. This statistic implies that, for high ¢, Edwards’
compactivity of the parking lot model depends linearly on the average volume per cell, as predicted by the
statistical mechanics calculation of Tarjus and Viot, which explicitly counted the blocked configurations of this

model [Phys. Rev. E 69, 011307 (2004)].
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Granular materials are athermal systems composed of a
large number of particles with nonlinear and dissipative in-
teractions. Predicting the collective behavior of these sys-
tems is relevant in numerous human activities [1]. A statisti-
cal mechanics description of granular materials in
mechanical equilibrium was proposed by Edwards and coau-
thors in 1989 in which the total volume V; of the system
plays the usual role of energy in conventional statistical me-
chanics [2]; a flat measure over all the blocked states for a
given volume is assumed. In this description, the equivalent
of the thermodynamic temperature is the compactivity y
=(3S/dVy)~!, where S is the entropy of the system. In me-
chanical equilibrium, sphere packings can be found with
packing fractions ¢ (fraction of the total volume occupied by
the grains) in the range ¢gyp— Prep- Large compactivities are
expected for ¢ near the random loose packing limit ¢y p and
small ones for packing fractions near the random close pack-
ing limit ¢gcp.

If the total volume of the sample is a state variable, then
the distribution of volumes at the grain level is fundamental.
In a recent article, Aste er al. [3] studied the local volume
distribution of monodisperse sphere packings with packing
fractions covering most of the range between ¢y p and ¢gcp.
Aste et al. were able to collapse a large amount of experi-
mental data on a single invariant distribution of local vol-
umes: in three dimensions, the distribution of local Voronoi
volumes of monodisperse sphere packings in mechanical
equilibrium is a gamma distribution with shape parameter
k=12. A gamma distribution of shape parameter k is the
distribution of the sum of k independent exponentially dis-
tributed variables. Simple models that exhibit this local vol-
ume distribution could help to understand the origin of the
statistical robustness found by Aste et al. In this Brief Re-
port, we study the distribution of local Voronoi volumes of
the parking lot model [4-10], which is an off-lattice stochas-
tic model of adsorption and desorption of particles on a sub-
strate. We find that this model exhibits a gamma distribution
of local Voronoi volumes only for high enough packing frac-
tions. The resulting compactivity of this model is in agree-
ment, in this range of ¢, with the results of a statistical
mechanics calculation made by Tarjus and Viot [10].

Nowak et al. [6] introduced the parking lot model (PLM)
in the context of granular materials. In this model, particles
of unit length adsorb uniformly on a substrate with rate p,
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and desorb with rate p_; desorption is unrestricted, while a
particle can adsorb on the substrate only if it does not over-
lap with other particles. Once adsorbed, a particle does not
move until it desorbs. For a given initial condition of the
substrate, the model converges to a stationary state of pack-
ing fraction ¢, that fluctuates, with ¢, depending only on the
parameter K=p,/p_. For large K, ¢, is given by ¢,=1
—1/log K [4]. For ¢,> ¢,, the PLM exhibits very slow re-
laxation, reminiscent of a glasslike behavior [7,11]. ¢,
~().75, which corresponds to K.~ 60. ¢, equals the packing
fraction at which the irreversible PLM, the case in which
p_=0, jams (starting from an empty substrate) [7]. This one-
dimensional model is thought to represent an average col-
umn of grains in a granular pack.

From the assumption that space can be divided into el-
ementary cells that can have any volume larger than or equal
to a minimum volume, that the sum of the volumes of these
elementary cells is the total volume of the sample, that k&
elementary cells form each cell of a given partition of space,
and that any assembly of those cells produces stable pack-
ings, Aste et al. arrived at the following distribution function

[3]:

—_v . &1 —_V..
f(V,k)= L (V= Vi) exp(—m>, (1)

I'(k) X X

where f(V,k) is the probability of a cell of volume V (that
consists of k elementary cells), y is the compactivity, which
is given by

V) - Vmin
0V @

and (V) is the average volume per cell. f(V,k) in Eq. (1) is a
gamma distribution, in the variable V-V, with shape pa-
rameter k and scale parameter y.

Voronoi decomposition is a common and useful way to
divide space into pieces. The Voronoi cell of a given particle
in the PLM consists of all those points that are closer to that
particle than to any other particle on the substrate. In Fig.
1(a), we show the distribution of Voronoi lengths p(x) of the
PLM obtained from Monte Carlo simulations for several val-
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FIG. 1. Voronoi length distribution p(x) of the PLM. (a) p(x)
versus x. (b) The same data of (a) but, as suggested by Eq. (1),
we plot p(x) versus (x—xpin)/ ((X)=Xmin). We show, for L=100,
p(x) for K=2, 4, 10, 14, 20, 30, 40, 50, 60, 65, 70, 80, 100, 140,
200, 300, 400, 600, 800, 1000, and 10000. For the PLM, ¢
=1/{x) and x;,=1.

ues of K. As suggested by Eq. (1), we plot p(x) as a function
of (x—=Xpin)/ ({X)—Xmin) in Fig. 1(b), and a partial collapse for
p(x) on a single curve can be observed.

Aste and Di Matteo [12] showed that the parameter k of
Eq. (1) can be obtained from (V) and the variance o,

V) - Vmin 2
e G0V .
ay
and that k follows the relation
NV
k= 20 @)
ax

From this last equation, the authors identified the param-
eter k as the analogue of the specific heat [12], so k measured
from Eq. (3) must be sensitive to the internal organization of
the system. In Fig. 2, we show the parameter k calculated
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FIG. 2. (Color online) k calculated from Eq. (3) as a function of
the parameter K of the PLM for L=100, 1000, and 10 000. Each
point in this graph corresponds to an average over 1000 samples in
stationary state. A finite size transition can be observed as the pa-
rameter K — 1, manifested as an extremum in k(K) [12].The vertical
dotted line corresponds to K=K,

PHYSICAL REVIEW E 77, 062301 (2008)

0] -
l: K>K,
[|— fx2
10 3
o~ C
Xl
5.10°F E
10°F 3
—47 | ol M| L m
1075
10° 0 10"

107 10" 10
x-D)/(<x>-1)

FIG. 3. (Color online) Voronoi length distribution p(x) of the
PLM. The same data of Fig. 1(b) are plotted here only for K> K.
~60. The continuous line is a gamma distribution with k=2. In the
inset, we show S=3[p(x)—f(x,2)]* vs K for L=200. A convergence
to f(x,2) can be seen at K=K,. In calculating S, (x—xy;,)/({x)
—Xpmin) in the interval 0-5 was divided in 1000 subintervals.

from Eq. (3) for the PLM as a function of K. It can be seen
that for K> K, the PLM saturates to k=~2.

Not all the curves in Fig. 1 are consistent with Eq. (1).
Consider the case K=2. From Fig. 2, we read that k=1 for
K=2, but for k=1 Eq. (1) reduces to a pure exponential that
is inconsistent with the distribution p(x) (the broader one)
that can be seen in Fig. 1 for K=2. We find that only for K
> K, is the measured p(x) consistent with a gamma distribu-
tion. In Fig. 3, we plot p(x) for K>K,, and a very good
agreement with a gamma distribution with shape parameter
k=2 can be observed.

If the distribution of local volumes is given by a gamma
distribution like Eq. (1), then the compactivity is given by
Eq. (2). For the PLM then, we have that the compactivity is
given by

1 1

P T— 5
klog K-1 ®)

XPLM =
for K>K,.

Tarjus and Viot [ 10] have worked out a statistical mechan-
ics description of the PLM within the framework proposed
by Edwards. As pointed out by these authors, in the PLM
there is no explicit account of a mechanical stability condi-
tion. They assumed that the stable or blocked configurations
in the PLM are those for which no more particle insertions
are possible, i.e., all those configurations for which the avail-
able line fraction @ is zero. For a given ¢ (for a given
number N of particles), the authors calculated the number of
configurations for this model under the constraint that all the
N gaps in the substrate have lengths smaller than 1 ($=0).
Assuming, as proposed by Edwards, that all those configu-
rations are equiprobable and in the limit of a large system
and a large value of the parameter K (large packing frac-
tions), Tarjus and Viot (TV) obtained that the compactivity
and the packing fraction of the PLM satisfy the relation [10]

1-¢ exp(= 1/xry)
T =XTV©T T o

1 —exp(=1/xy) ©
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Since for large K small compactivities are expected, Eq.
(6) reduces to

1-

Td) ~ Xtv (7)
for large values of K. Since ¢p=1/(x), Eq. (7) is consistent
with a gamma distribution of shape parameter k=1, which is
expected since the partition used by the authors consists of
gaps with half-particles on each side.

From the results for the PLM presented above, volume
exclusion and disorder appear to be crucial ingredients to
observe gamma distributions in granular materials. Anyway,
it is clear that not all the system’s properties are embedded in
their distribution of local volumes. The same local volume
distribution describes monodisperse sphere packings in al-
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most the whole range of packing fractions from ¢gip to
¢rcep- However, in this range of packing fractions, Schroter
et al. [13] showed that the system’s response to shear exhib-
its a phase transition at a packing fraction ¢,,, with ¢rip
< &< Prep-

In this Brief Report, we have studied the distribution of
local Voronoi lengths of the PLM, and we have found that it
exhibits a gamma distribution of shape parameter k=2 for
high enough packing fractions. This type of distribution of
local Voronoi volumes has been found experimentally by
Aste et al. [3] for monodisperse sphere packings in mechani-
cal equilibrium. As a consequence of this type of distribu-
tion, the Edwards compactivity depends linearly on the av-
erage volume per cell, a result that is consistent with the
statistical mechanics calculation made by Tarjus and Viot
[10] for the PLM.
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